Ethopy Analysis¶
A comprehensive Python package for analyzing and visualizing behavioral data from Ethopy experiments.
Overview¶
Ethopy Analysis provides a modern, modular approach to behavioral data analysis with the following key features:
- DataFrame-based: Plotting functions work with pandas DataFrames
- Modular Design: Composable functions for different analysis levels (animal, session, comparison)
- DataJoint-based: Works with DataJoint databases and provides DataFrame interfaces
- Extensible: Modular function-based architecture for easy extension
- Production Ready: Command-line interface, proper packaging, and configuration management
Quick Links¶
- Installation Guide - Get started with the package
- Quick Start - Jump into analysis with examples
- CLI Reference - Command-line interface documentation
- Configuration - Database and system configuration
- API Reference - Function documentation
Package Architecture¶
The package is organized into focused modules:
data/
- Data loading and processing functionsplots/
- Plotting functions (DataFrame-based, DataJoint-sourced)db/
- Database connectivityconfig/
- Configuration managementcli.py
- Command-line interface
Getting Started¶
- Install the package - Set up your environment
- Configure your database - Set up database connection (optional)
- Try the quick start - Run your first analysis
- Explore examples - Check out the Jupyter notebooks
Example Usage¶
# Basic animal analysis
from ethopy_analysis.data.loaders import get_sessions
from ethopy_analysis.plots.animal import plot_session_performance
# Load data
sessions = get_sessions(animal_id=123, min_trials=20)
# Create visualization
fig, ax = plot_session_performance(123, sessions['session'].values)
Support¶
- Issues: Report bugs and request features on GitHub
- Documentation: Complete API reference and examples
- Examples: Jupyter notebooks with real analysis workflows